
A Scheduling Service Model and a SchedulingArchitecture for an Integrated Services Packet NetworkScott Shenker1David D. Clark2Lixia Zhang1AbstractIntegrated Services Packet Networks (ISPN) are designed to integrate the network servicerequirements of a wide variety of computer-based applications. Some of these services aredelivered primarily through the packet scheduling algorithms used in the network switches.This paper addresses two questions related to these scheduling algorithms. The �rst ques-tion is: what scheduling services should an ISPN o�er? In answer, we propose a schedulingservice model for ISPN's which is based on our projections about future application and in-stitutional service requirements. Our service model includes both a delay-related componentdesigned to meet the ergonomic requirements of individual applications, and also a hierarchi-cal link-sharing component designed to meet the economic needs of resource sharing betweendi�erent entities. The second question we address is: what implications does this servicemodel have for the packet scheduling algorithms? We answer this question by constructing ascheduling architecture, and then argue that any scheduling algorithm capable of supportingour scheduling service model must conform to this architecture. The scheduling architectureis derived from the natural precedence ordering of the service model's various schedulinggoals.
1Palo Alto Research Center, Xerox Corporation2Laboratory for Computer Science, MIT. 1



1 IntroductionThe current Internet, and most similar networks, o�ers a very simple service model: all packetsreceive the same \best e�ort" service. The term \best e�ort" means that the network tries toforward packets as soon as possible, but makes no quantitative commitments about the qualityof service delivered. This service model can be realized by using a single FIFO queue to dopacket scheduling in the switches; in fact, this service model arose precisely because FIFO packetscheduling cannot e�ciently deliver any other service model. This single class \best e�ort" servicemodel provides the same quality of service to all ows3; this uniform quality of service is good,as measured by delay and dropped packets, when the network is lightly loaded but can be quitepoor when the network is heavily utilized. Consequently, only those applications that are rathertolerant of this variable service, such as �le transfer (e.g., FTP), electronic mail, and interactiveterminals (e.g., Telnet) have become widely adopted in the Internet.However, we expect there to soon be widespread demand for an emerging generation of computerbased applications, such as FAX, remote video, multimedia conferencing, data fusion, remote X-terminals, visualization, and virtual reality. These applications represent a wide variety of qualityof service requirements, ranging from the asynchronous nature of FAX and electronic mail to theextremely time-sensitive nature of high quality audio, and from the low bandwidth requirements ofTelnet to the bandwidth intensive requirements of HDTV. To meet all of these service requirementsusing the current Internet service model, it would be necessary (but perhaps not su�cient) to keepthe utilization level extremely low. A better solution is to o�er a more sophisticated service model,so that applications can specify their service needs and the network can then allocate its resourcesselectively towards those applications that are more performance sensitive.We expect that, in order to e�ciently integrate the requirements of a wide variety of applications,the next generation of wide-area computer networks will o�er a signi�cantly more sophisticatedservice model. There is widespread consensus, in both the telephony and computer networkingcommunities, that such networks should use packet-switching rather than circuit switching becausepacket-by-packet multiplexing uses bandwidth more e�ciently than circuit-by-circuit multiplex-ing in the presence of bursty tra�c. We will refer to packet-switched networks which supportsophisticated service models as Integrated Services Packet Networks (ISPN).One natural question is: what service model should an ISPN o�er? This question is motivated bythe design philosophy that the service model is the enduring, and therefore the most fundamental,part of a network architecture. The service model will be incorporated into the network serviceinterface used by future applications; as such, it will de�ne the set of services they can request,and will therefore inuence the design of future applications as well as the performance of existingones. While both the underlying network technology and the overlying suite of applications willevolve, the need for compatibility requires that this service interface remain stable4. Thus, the3Flow is the term we use to refer to end-to-end connections and other more general varieties of tra�c streams.4Actually, compatibility only demands that the existing parts of the service model must remain largely un-changed; however, the service model can be augmented without di�culty. Also, we should note that these compati-bility arguments apply only to those aspects of the service model which are part of the network service interface; ourservice model will also have some components (link-sharing) which are exercised through a network managementinterface, and here the compatibility arguments do not apply with nearly the same force.2



service model should not be designed in reference to any speci�c network artifact but rather shouldbe based on fundamental service requirements. Because of its enduring impact, the choice of theservice model is perhaps the single most important design decision in building an ISPN5.In order to e�ciently support this more sophisticated service model, an ISPN must employ anequally sophisticated non-FIFO packet scheduling algorithm. In fact, the packet scheduling algo-rithm is the most fundamental way in which the network can allocate resources selectively; thenetwork can also allocate selectively via routing or bu�er management algorithms, but neither ofthese by themselves can support a su�ciently general service model. Once the networking commu-nity decides on an ISPN service model, a second natural question arises: which packet schedulingalgorithms can realize this ISPN service model?This paper discusses both the de�nition of an ISPN service model and also the interplay betweenthe ISPN's service model and its packet scheduling algorithms. In the �rst part of our paper, weaddress the �rst question by proposing a subset of the service model, which we call the schedulingservice model. The scheduling service model contains only those services that are related directlyto the packet scheduling algorithm. We expect that the scheduling service model will form thecore component of the full ISPN service model, and thus is deserving of special focus. We motivateour proposed scheduling service model by discussing the fundamental service requirements that anISPN will need to meet. This detailed discussion of service requirements is one of the key noveltiesof our approach.Since the scheduling service model focuses on the packet scheduling algorithm, there are many ser-vices that are not included in our scheduling service model. In particular, we exclude those serviceswhich are concerned with which network links are used (which is the domain of routing) and thoseservices which involve encryption, security, authentication, or transmission reliability. We also donot consider services, such as reliable multicast, which do tangentially involve the scheduling ofpackets but which more fundamentally involve nonscheduling factors such as bu�er managementand inter-switch acknowledgment algorithms. Furthermore, we do not consider services which canbest be delivered at the end host or by gateway switches at the edge of the network, such assynchronization of di�erent tra�c streams. Although we expect that many of these services willbe o�ered by any future ISPN, they will not a�ect the basic scheduling service model and thuswe do not expect that they will signi�cantly a�ect the packet scheduling algorithms used in theinternal switches.In the second part of our paper, we address the second question by investigating what implica-tions our scheduling service model has for packet scheduling algorithms. Recall that there is atight coupling between the current Internet service model and the underlying FIFO schedulingalgorithm. Similarly, we ask whether one can make any statements about the general structure, orarchitecture, of the packet scheduling algorithms that are needed to realize this ISPN schedulingservice model. It turns out that, once one recognizes the natural precedence ordering between thevarious components of the scheduling service model, there is a canonical scheduling architecturedictated by our proposed ISPN scheduling service model. While there are many packet schedulingalgorithms which realize the ISPN service model, we argue that they all must conform to the basic5Reference [2], and to a lesser extent reference [15], also focus on exibility of the packet scheduler as a primarydesign objective. We discuss this at greater length in Section 9.3



architecture that we develop.In this paper, we do not address the design of speci�c packet scheduling algorithms except topresent briey one particular instantiation of our architecture6 which demonstrates that our servicemodel is not impractical. We should note that there have been many other packet schedulingalgorithms proposed in the literature (see, for example, [12, 14, 16, 17, 25, 28, 30, 31, 35]), andthey too implement various pieces of our service model.A packet scheduling algorithm is only part of a complete mechanism to support explicit qualitiesof service. In particular, since resources are �nite, one cannot support an unbounded number ofservice requests. The network must employ some form of admission algorithm so that it has controlover which service commitments are made. The admission process requires that ows characterizetheir tra�c stream to the network when requesting service, and the network then determineswhether or not to grant the service request. While in this paper we focus on the schedulingservice model and on the architecture of scheduling algorithms, it is important to keep in mindthat admission control plays a crucial role in allowing these scheduling algorithms to be e�ectiveby keeping the aggregate tra�c load down to a level where meeting the service commitments isfeasible (see [14, 19, 23, 27] for examples of admission control algorithms). In fact, admissioncontrol is but one kind of denial of service; we will discuss the several varieties of denial of serviceand their role in allowing the scheduling algorithm to meet service commitments.This work is a revised version of the �rst half of Reference [3], which contains an embryonic form ofthe thinking presented here. However, we would like to acknowledge that the thoughts discussedin this paper also reect the contributions of many others. In particular, the works of Parekh andGallager [30, 31], Ferrari et al. [12, 14, 35], Jacobson and Floyd [2, 25, 15], Golestani [16, 17],Guerin et al. [18, 19], Kurose et al. [4, 20, 29, 33, 37], Lazar et al. [21, 22, 23, 24], and Kalmanek etal. [28] have been critical in shaping our thinking on this matter. Discussions with the End-to-EndServices Research Group, the authors of the above works, and many of our other colleagues havealso been instrumental in clarifying our thoughts. In particular, Abhay Parekh has taught us muchabout the delay bound results in [30, 31]. Also, Sally Floyd and Van Jacobson have rightly insistedthat packet scheduling algorithms must deal with packet dropping and hierarchical link-sharing;we wish to acknowledge that much of our thinking on the hierarchical nature of link-sharing wasstimulated by, and borrows heavily from, their work.This paper has 10 sections. In Section 2 we identify the two kinds of quantitative service commit-ments we expect future networks to make; these are quality of service commitments to individualows and resource-sharing commitments to collective entities. In Section 3 we explore the servicerequirements of individual ows and then propose a corresponding set of service models. In Sec-tion 4 we discuss the service requirements for resource-sharing commitments to collective entities,and propose a related service model. In Section 5 we present a precedence ordering among theseservice commitments and then in Section 6 we argue that this ordering leads to a particular packetscheduling architecture. In Section 7 we present an instantiation of this architecture. In Section 8,we review the various forms denial of service can manifest, and the ways in which denial of servicecan be used to augment the scheduling service model. We review the related literature in Section6A fuller description of this packet scheduling algorithm will be forthcoming in a revision of the mechanismpresented in the second half of Reference [3]. 4



9, and then conclude in Section 10.2 Service CommitmentsA service model is made up of service commitments; that is, a service model describes whatservice the network commits to deliver in response to a particular service request. In this section,we describe the various di�erent kinds of service commitments that are included in our schedulingservice model.Service commitments can be divided up into two classes, depending on the way in which theservice is characterized. One class of service commitment is a quantitative or absolute servicecommitment, which is some form of assurance that the network service will meet or exceed theagreed upon quantitative speci�cations; a typical example of this is a bound on maximal packetdelay. The other class of service commitment is a qualitative or relative service commitment, whichis merely some form of assurance about how one set of packets will be treated relative to other setsof packets. One example of this kind of relative service commitment is to o�er several di�erentpriority classes; the service in any priority class is not quantitatively characterized, but there is arelative commitment to serve tra�c in a given priority class before tra�c in lower priority classes.Thus, when we say that the current Internet o�ers only a single \best-e�ort" class of service,this is equivalent to saying that it does not o�er any quantitative service commitments, and onlyo�ers the most trivial relative service commitment to treat all packets equivalently. An importantdistinction between these two classes of commitments is that quantitative service commitmentsoften inherently require some form of admission control, with the ow characterizing its tra�c insome manner; in contrast, relative service commitments generally do not require any admissioncontrol.Service commitments can also be divided into two categories depending on the entities to whichthe commitments are made. The �rst category of service commitments is the one most oftenconsidered in the current literature; these are quality of service commitments to individual ows.In this case the network provides some form of assurance that the quality of service delivered tothe contracting ow will meet or exceed the agreed upon speci�cations. The need for these kinds ofservice commitments is usually driven by the ergonomic requirements of individual applications.For instance, the perceived quality of many interactive audio and video applications declinesdramatically when the delay of incoming packets becomes too large; thus, these applicationswould perform better if the network would commit to a small bound on the maximum packetqueueing delay. In Section 3 we discuss what quality of service commitments are included in ourscheduling service model.In contrast, the second category of service commitment we consider has rarely been explicitlydiscussed in the research literature, even though there is widespread agreement in the industrythat there is great customer demand for this feature (at this time, certainly greater demand than forthe quality of service commitments to individual ows); these are resource-sharing commitmentsto collective entities. In this case, the network provides an assurance that the resource in questionwill be shared according to some prearranged convention among some set of collective entities.5



These collective entities could, for example, be institutions, protocol families, or application types.An example of the need for such resource-sharing commitments is when two private companieschoose to jointly purchase a �ber optic link and then elect to share the bandwidth in proportion tothe capital investments of the two companies. In Section 4, we present a more detailed motivationfor this form of service commitment and then discuss the particular resource-sharing commitmentsthat are part of our scheduling service model.3 Quality of Service Requirements and Service ModelsIn the previous section, we distinguished two sorts of service requirements, quality of servicerequirements and resource sharing requirements. In this section we consider quality of servicerequirements. We �rst argue that packet delay is the key measure of quality of service. We thenpresent our assumptions about the nature of future computer-based applications and their servicerequirements. Finally, we describe a set of quality of service commitments designed to meet theseservice requirements.3.1 The Centrality of DelayThere is one measure of service that is relevant to almost all applications: per-packet delay. Insome sense, delay is the fundamental measure of the service given to a packet, since it describeswhen (and if) a packet is delivered and, if we assume that data is never corrupted (which wethink is a good approximation for future high-speed networks), the time of delivery is the onlyquantity of interest to applications. Delay is clearly the most central quality of service, and thuswe will therefore start by assuming that the only qualities of service about which the networkmakes commitments relate to per-packet delay. Later, in Section 3.3 we will return to this pointand ask if the service model that results from this initial assumption is su�ciently general.In addition to restricting our attention to delay, we make the even more restrictive assumptionthat the only quantity about which we make quantitative service commitments are bounds on themaximum and minimum delays. Thus, we have excluded quantitative service commitments aboutother delay related qualities of service, such as targets for average delay. This is based on threejudgments. First, controlling nonextremal values of delay through scheduling algorithms is usuallyimpractical because it requires detailed knowledge of the actual load, rather than just knowledgeof the best and worst case loads. Second, even if one could control nonextremal measures of packetdelay for the aggregate tra�c in the network, this does not control the value of such measuresfor individual ows; e.g., the average delay observed by a particular ow need not be the sameas, or even bounded by, the average of the aggregate (see [29] for a discussion of related issues).Thus, controlling nonextremal measures of delay for the aggregate is not su�cient, and we judgeit impractical to control nonextremal measures of delay for each individual ow. Third, as will beargued in the next section, applications that require quantitative delay bounds are more sensitiveto the extremes of delay than the averages or other statistical measures, so even if other delayrelated qualities of service were practical they would not be particularly useful. We discuss this6



network

sender receiver

Play-back

bufferFigure 1: A schematic diagram of a playback application. The signal is generated and packetizedat the sender and then transmitted over the network. The receiver, in order to remove the e�ectsof network-induced delay jitter, bu�ers the packets until their playback points.in the section below when we discuss real-time applications.Why have we not included bandwidth as a quality of service about which the network makescommitments? This is primarily because, for applications which care about the time-of-deliveryof each packet, the description of per-packet delay is su�cient. The application determines itsbandwidth needs, and these needs are part of the tra�c characterization passed to the network'sadmission control algorithm; it is the application which then has to make a commitment about thebandwidth of its tra�c (when requesting a quantitative service commitment from the network),and the network in turn makes a commitment about delay. However, there are some applicationswhich are essentially indi�erent to the time-of-delivery of individual packets; for example, whentransferring a very long �le the only relevant measure of performance is the �nish time of thetransfer, which is almost exclusively a function of the bandwidth. We discuss such applications atthe end of Section 3.3.3.2 Application Delay RequirementsThe degree to which application performance depends on low delay service varies widely, andwe can make several qualitative distinctions between applications based on the degree of theirdependence. One class of applications needs the data in each packet by a certain time and, if thedata has not arrived by then, the data is essentially worthless; we call these real-time applications.Another class of applications will always wait for data to arrive; we call these elastic applications.We now consider the delay requirements of these two classes separately.3.2.1 Real-Time ApplicationsAn important class of such real-time applications, which is the only real-time applications weexplicitly consider in the arguments that follow, are playback applications; Figure 1 illustratessuch an application. In a playback application, the source takes some signal, packetizes it, andthen transmits the packets over the network. The network inevitably introduces some variationin the delay of the delivered packets. This variation in delay has traditionally been called \jitter".7



The receiver depacketizes the data and then attempts to faithfully play back the signal. This isdone by bu�ering the incoming data to remove the network induced jitter and then replaying thesignal at some �xed o�set delay from the original departure time; the term playback point refersto the point in time which is o�set from the original departure time by this �xed delay. Anydata that arrives before its associated playback point can be used to reconstruct the signal; dataarriving after the playback point is essentially useless in reconstructing the real-time signal7.In order to choose a reasonable value for the o�set delay, an application needs some a prioricharacterization of the maximum delay its packets will experience. This a priori characterizationcould either be provided by the network in a quantitative service commitment to a delay bound, orthrough the observation of the delays experienced by the previously arrived packets; the applicationneeds to know what delays to expect, but this expectation need not be constant for the entireduration of the ow.The performance of a playback application is measured along two dimensions: latency and �delity.In general, latency is the delay between the two (or more) ends of a distributed application; forplayback applications, latency is the delay between the time the signal is generated at the sourceand the time the signal is played back at the receiver, which is exactly the o�set delay. Applicationsvary greatly in their sensitivity to latency. Some playback applications, in particular those thatinvolve interaction between the two ends of a connection such as a phone call, are rather sensitiveto the value of the o�set delay; other playback applications, such as transmitting a movie orlecture, are not.Fidelity is the measure of how faithful the playback signal is to the original signal. The play-back signal is incomplete when packets arrive after their playback point and thus are droppedrather than played back. The playback signal becomes distorted when the o�set delay is varied.Therefore, �delity is decreased whenever the o�set delay is varied and whenever packets miss theirplayback point. Applications exhibit a wide range of sensitivity to loss of �delity. We will considertwo somewhat arti�cially dichotomous classes: intolerant applications, which require an absolutelyfaithful playback, and tolerant applications, which can tolerate some loss of �delity 8. Intoleranceto loss of �delity might arise because of user requirements (e.g., distributed symphony rehearsal),or because the application hardware or software is unable to cope with missing pieces of data. Onthe other hand, users of tolerant applications, as well as the application hardware and software,are prepared to accept occasional distortions in the signal. We expect that the vast bulk of audioand video applications will be tolerant.Delay can a�ect the performance of playback applications in two ways. First, the value of theo�set delay, which is determined by predictions about the future packet delays, determines thelatency of the application. Second, the delays of individual packets can decrease the �delity ofthe playback by exceeding the o�set delay; the application then can either change the o�set delayin order to play back late packets (which introduces distortion) or merely discard late packets7It is an oversimpli�cation to say that the data is useless; we discuss below that a receiving application couldadjust the playback point as an alternative to discarding late packets.8Obviously, applications lie on a continuum in their sensitivity to �delity. Here we are merely consideringtwo cases as a pedagogical device to motivate our service model, which indeed applies to the full spectrum ofapplications. 8



(which creates an incomplete signal). The two di�erent ways of coping with late packets o�er achoice between an incomplete signal and a distorted one, and the optimal choice will depend onthe details of the application, but the important point is that late packets necessarily decrease�delity.Intolerant applications must use a �xed o�set delay, since any variation in the o�set delay willintroduce some distortion in the playback. For a given distribution of packet delays, this �xedo�set delay must be larger than the absolute maximum delay, to avoid the possibility of latepackets. In contrast, tolerant applications need not set their o�set delay greater than the absolutemaximum delay, since they can tolerate some late packets. Moreover, tolerant applications canvary the o�set delay to some extent, as long as it doesn't create too much distortion.Thus, tolerant applications have a much greater degree of exibility in how they set and adjusttheir o�set delay. In particular, instead of using a single �xed value for the o�set delay, they canattempt to reduce their latency by varying their o�set delays in response to the actual packetdelays experienced in the recent past. We call applications which vary their o�set delays in thismanner adaptive playback applications. This adaptation amounts to gambling that the past packetdelays are good predictors of future packet delays; when the application loses the gamble thereis a momentary loss of data as packets miss their playback points, but since the application istolerant of such losses the decreased o�set delay may be worth it. Besides the issue of inducinglate packets, there is a complicated tradeo� between the advantage of decreased o�set delay andthe disadvantage of reduced �delity due to variations in the o�set. Thus, how aggressively anapplication adapts, or even if it should adapt at all, depends on the relative ergonomic impact of�delity and latency. Our main observation here, though, is that by adapting to the delays of in-coming packets, tolerant playback applications can often pro�t by reducing their o�set delay whenthe typical delays are well below the absolute maximum; this advantage, of course, is accompaniedby the risk of occasional late packets.We now state several of our assumptions about the nature of future real-time applications. First,we believe that most audio and video applications will be playback applications, and we thereforethink that playback applications will be the dominant category of real-time tra�c. By designinga service model that is appropriate for these playback applications, we think we will have satisfac-torily (but perhaps not optimally) met the needs of all real-time applications. Second, we believethat the vast majority of playback applications will be tolerant and that many, if not most, ofthese tolerant playback applications will be adaptive. The idea of adaptive applications is not rel-evant to circuit switched networks, which do not have jitter due to queueing. Thus, most real-timedevices today, like voice and video codecs, are not adaptive. Lack of widespread experience mayraise the concern that adaptive applications will be di�cult to build. However, early experimentssuggest that it is actually rather easy. Video can be made to adapt by dropping or replaying aframe as necessary, and voice can adapt imperceptibly by adjusting silent periods. In fact, suchadaptive approaches have been employed in packetized voice applications since the early 70's (see[9, 36]); the VT [1] and VAT [26] packet voice protocols, which are currently used to transmitvoice on the Internet, are living examples of such adaptive applications.Third, we believe that most playback applications will have su�cient bu�ering to store packetsuntil their playback point. We base our belief on the fact that the storage needed is a function of9



the queueing delays, not the total end-to-end delay. There is no reason to expect that queueingdelays for playback applications will increase as networks get faster (in fact, for an M/M/1 queue-ing system with a �xed utilization, queueing delays are inversely proportional to the speed), andit is certainly true that memory is getting cheaper, so providing su�cient bu�ering will becomeincreasingly practical. Fourth, and last, we assume that applications have su�cient knowledgeabout time to set the playback point. The notion of a playback application implies that suchapplications have some knowledge about the original generation time of the data. This knowl-edge could either be explicitly contained in timestamps, or an approximation could be implicitlyobtained by knowing the inter-packet generation intervals of the source.3.2.2 Elastic ApplicationsWhile real-time applications do not wait for late data to arrive, elastic applications will alwayswait for data to arrive. It is not that these applications are insensitive to delay; to the con-trary, signi�cantly increasing the delay of a packet will often harm the application's performance.Rather, the key point is that the application typically uses the arriving data immediately, ratherthan bu�ering it for some later time, and will always choose to wait for the incoming data ratherthan proceed without it. Because arriving data can be used immediately, these applications donot require any a priori characterization of the service in order for the application to function.Generally speaking, it is likely that for a given distribution of packet delays, the perceived per-formance of elastic applications will tend to depend more on the average delay than on the tail ofthe distribution. One can think of several categories of such elastic applications: interactive burst(Telnet, X, NFS), interactive bulk transfer (FTP), and asynchronous bulk transfer (electronicmail, FAX). The delay requirements of these elastic applications vary from rather demanding forinteractive burst applications to rather lax for asynchronous bulk transfer, with interactive bulktransfer being intermediate between them.3.3 Delay Service ModelsWe now turn to describing service models that are appropriate for the various classes of applicationsthat were discussed in the previous paragraphs. Since we are assuming that playback applicationscomprise the bulk of the real-time tra�c, we must design service models for intolerant playbackapplications, tolerant playback applications, and elastic applications.The o�set delay of intolerant playback applications must be no smaller than the maximum packetdelay to achieve the desired faithful playback. Furthermore, this o�set delay must be set beforeany packet delays can be observed. Such an application can only set its o�set delay appropriatelyif it is given a perfectly reliable9 upper bound on the maximum delay of each packet. We call aservice characterized by a perfectly reliable upper bound on delay guaranteed service, and proposethis as the appropriate service model for intolerant playback applications. Note that the delay9By perfectly reliable, we mean that the bound is based on worst case assumptions about the behavior of allother ows. The validity of the bound is predicated on the proper functioning of all network hardware and softwarealong the path of the ow. 10



bound not only allows the application to set its o�set delay appropriately, but it also provides theinformation necessary to predict the resulting latency of the application.Since such a intolerant playback application will queue all packets until their respective playbackpoints, application performance is completely independent of when the packets arrive, as longas they arrive within the delay bound. The fact that we assume that there is su�cient bu�eringmeans that we need not provide a nontrivial lower bound to delay; of course, the trivial no-queueingminimum delay will be given as part of the service speci�cation.A tolerant playback application which is not adaptive will also need some form of a delay boundso that it can set its o�set delay appropriately. Since the application is tolerant of occasional latepackets, this bound need not be perfectly reliable. For this class of applications we propose aservice model called predictive service which supplies a fairly reliable, but not perfectly reliable,delay bound. For this service, the network advertises a bound which it has reason to believe withgreat con�dence will be valid, but cannot formally \prove" its validity10. If the network turns outto be wrong and the bound is violated, the application's performance will perhaps su�er, but theusers are willing to tolerate such interruptions in service in return for the presumed lower cost ofthe service and lower realized delays11.It is important to emphasize that this is not a statistical bound, in that no statistical failurerate is provided to the application in the service description. We do not think it feasible toprovide a statistical characterization of the delay distribution because that would require a detailedstatistical characterization of the load. We do envision the network ensuring the reliability of thesepredictive bounds, but only over very long time scales; for instance, the network could promisethat no more than a certain fraction of packets would violate the predictive bounds over the courseof a month 12. Such a statement is not a prediction of performance but rather a commitment toadjust its bound-setting algorithm to be su�ciently conservative.All nonadaptive applications, whether tolerant or not, need an a priori delay bound in order toset their o�set delay; the degree of tolerance only determines how reliable this bound must be. Inaddition to being necessary to set the o�set delay, these delay bounds provide useful estimates ofthe resulting latency. Nonadaptive tolerant applications, like the intolerant applications consideredabove, are indi�erent to when their packets arrive, as long as they arrive before the delay bound.Recall, however, that we are assuming that many, if not most, tolerant playback applicationsare adaptive. Thus, we must design the service model with such adaptation in mind. Sincethese applications will be adapting to the actual packet delays, a delay bound is not needed toset the o�set delay. However, in order to choose the appropriate level of service, applications10This bound, in contrast to the bound in the guaranteed service, is not based on worst case assumptions on thebehavior of other ows. Instead, this bound might be computed with properly conservative predictions about thebehavior of other ows.11For nonadaptive applications, the realized latency is lower with predictive service since the fairly reliable boundswill be less conservative than the perfectly reliable bounds of guaranteed service. For adaptive applications, as wediscuss below, the minimax component of predictive service can, and we expect usually will, reduce the averagelatency, i.e. the average value of the o�set delay, to be well below the advertised bound.12Such an assurance is not meaningful to an individual ow, whose service over a short time interval mightbe signi�cantly worse than the nominal failure rate. We envision that such assurances would be directed at theregulatory bodies which will supervise the administration of such networks.11



need some way of estimating their performance with a given level of service. Ideally, such anestimate would depend on the detailed packet delay distribution. We consider it impractical toprovide predictions or bounds on anything other than the extremal delay values. Thus, we proposeo�ering the same predictive service to tolerant adaptive applications, except that here the delaybound is not primarily used to set the o�set delay (although it may be used as a hint) but ratheris used to predict the likely latency of the application.The actual performance of adaptive applications will depend on the tail of the delay distribution.We can augment the predictive service model to also give minimax service, which is to attemptto minimize the ex post maximum delay. This service is not trying to minimize the delay of everypacket, but rather is trying to pull in the tail of the distribution. Here the fairly reliable predictivedelay bound is the quantitative part of the service commitment, while the minimax part of theservice commitment is a relative service commitment. We could o�er separate service modelsfor adaptive and nonadaptive tolerant playback applications, with both receiving the predictiveservice as a quantitative service commitment and with only adaptive applications receiving theminimax relative commitment. However, since the di�erence in the service models is rather minor,we choose to only o�er the combination of predictive and minimax service.It is clear that given a choice, with all other things being equal, an application would performno worse with absolutely reliable bounds than with fairly reliable bounds. Why, then, do weo�er predictive service? The key consideration here is e�ciency13; when one relaxes the servicerequirements from perfectly to fairly reliable bounds, this increases the level of network utilizationthat can be sustained, and thus the price of the predictive service will presumably be lower thanthat of guaranteed service. The predictive service class is motivated by the conjecture that theperformance penalty will be small for tolerant applications but the overall e�ciency gain will bequite large.As we discussed above, both of these service models have a quantitative component. In orderto o�er this service, the nature of the tra�c from the source must be characterized, and theremust be some admission control algorithm which insures that a requested ow can actually beaccommodated. A fundamental point of our overall architecture is that tra�c characterizationand admission control are necessary for these real-time delay bound services.The third category for which we must develop a service model is elastic applications. Elastic appli-cations are rather di�erent than playback applications; while playback applications hold packetsuntil their playback time, elastic applications use the packet whenever it arrives. Thus, reducingthe delays of any packet tends to improve performance. Furthermore, since there is no o�set delay,there is no need for an a priori characterization of the delays. An appropriate service model is toprovide as-soon-as-possible, or ASAP service, which is a relative, not quantitative, commitment14.Elastic applications vary greatly in their sensitivity to delay (which, as we mentioned earlier, isprobably more a function of the average delay than of the maximum delay), and so the service13E�ciency can be thought of as the number of applications that can be simultaneously serviced with a givenamount of bandwidth; for a fuller de�nition, see [6, 32].14We choose not to use the term \best-e�ort" for the ASAP service since that connotes the FIFO service discipline.Also, we should note that we do not describe, as part of the scheduling service model, any congestion control relatedfeedback (congestion noti�cation bits, etc.) which might be part of such a service.12



model for elastic tra�c should distinguish between the various levels of delay sensitivity. We there-fore propose a multiclass ASAP service model to reect the relative delay sensitivities of di�erentelastic applications. This service model allows interactive burst applications to have lower delaysthan interactive bulk applications, which in turn would have lower delays than asynchronous bulkapplications. In contrast to the real-time service models, this service model does not provide anyquantitative service commitment, and thus applications cannot predict their likely performanceand are also not subject to admission control. However, we think that rough predictions aboutperformance, which are needed to select a service class, could be based on the ambient networkconditions and historical experience. If the network load is unusually high, the delays will degradeand the users must be prepared to tolerate this, since there was no admission control to limit thetotal usage.However, there may be some cases where an application (or the user of the application) mightwant to know more precisely the performance of the application in advance. For instance, a Telnetuser might want to ensure that the delays won't interfere with her typing. For these cases, theapplication can request predictive service (since the �rmness of the guaranteed bound is probablynot required) provided it is willing to specify the maximum transmission rate desired. Notethat since the network will then require compliance with the advertised transmission rate, theapplication cannot get a higher throughput rate than what it requested.At the beginning of this section, we made the initial assumption that delay was the only qualityof service about which the network needed to make commitments. We now revisit this issue andask if that is indeed the case. For the typical real-time or elastic application which cares aboutthe delays of individual packets, there seems to be no need to include any other quality of service.However, we observed earlier that there are some applications, such as transfers of very long �les,which are essentially indi�erent to the delays of individual packets and are only concerned withoverall delay of the transfer. For these indi�erent applications, bandwidth rather than delay isa more natural characterization of the desired service, since bandwidth dictates the applicationperformance. If such an application has no intrinsic overall delay requirement, then the desiredservice is to �nish the transfer as quickly as possible. The desired service is as-much-bandwidth-as-possible. By servicing packets as soon as possible, the ASAP service described above deliversexactly this as-much-bandwidth-as-possible service. Thus, while we did not explicitly considerbulk transfer applications, our proposed service model already provides the desired service forbulk transfer applications with no intrinsic overall delay requirements.However, if this bulk transfer application had some intrinsic overall delay requirement, i.e. itrequired the transfer to be completed within a certain time, then the ASAP service is no longersu�cient. Now, the appropriate service is to allow the application to request a speci�ed amount ofbandwidth; the application chooses this bandwidth amount so that the transfer will be completedin time. An application can secure a given amount of bandwidth through either of the real-timeservices. The per-packet delay bounds provided by these real-time services are superuous to bulktransfer applications with overall delay requirements. While one could imagine a di�erent servicewhich provided a commitment on bandwidth but not per-packet delay, the di�erence betweenrequesting a large delay bound and no delay bound is rather insigni�cant, and thus we expectthat such indi�erent applications with delay requirements will be adequately served by predictive13



Applications

Elastic Real-Time

Tolerant IntolerantInteractive
Burst

Interactive
Bulk

Asynchronous
Bulk

ASAP
Level 1

ASAP
Level 2

ASAP
Level 3

Predictive
Minimax GuaranteedFigure 2: Our rough taxonomy of applications and their associated service models. We havearbitrarily depicted three levels of ASAP service.service with very large delay bounds. This has the disadvantage that indi�erent applicationswith delay requirements do not get as-much-bandwidth-as-possible, but are constrained to theirreserved amount.Figure 2 depicts our taxonomy of applications and the associated service models. This taxonomyis neither exact nor complete, but was only used to guide the development of the schedulingservice model. The resulting scheduling service model should be judged not on the validity ofthe underlying taxonomy but rather on its ability to adequately meet the needs of the entirespectrum of applications. In particular, not all real-time applications are playback applications;for example, one might imagine a visualization application which merely displayed the imageencoded in each packet whenever it arrived. However, non-playback applications can still use eitherthe guaranteed or predictive real-time service model, although these services are not speci�callytailored to their needs. Similarly, playback applications cannot be neatly classi�ed as eithertolerant or intolerant, but rather fall along a continuum; o�ering both guaranteed and predictiveservice allows applications to make their own tradeo� between �delity and latency. Despite theseobvious de�ciencies in the taxonomy, we expect that it describes the service requirements of currentand future applications well enough so that our scheduling service model can adequately meet allapplication needs.4 Resource-Sharing Requirements and Service ModelsThe last section considered quality of service commitments; these commitments dictate how thenetwork must allocate its resources among the individual ows. This allocation of resources istypically negotiated on a ow-by-ow basis as each ow requests admission to the network, anddoes not address any of the policy issues that arise when one looks at collections of ows. To ad-dress these collective policy issues, we now discuss resource-sharing service commitments. Recallthat for individual quality of service commitments we focused on delay as the only quantity of14



interest. Here, we postulate that the quantity of primary interest in resource-sharing is aggregatebandwidth on individual links. Our reasoning for this is as follows. Meeting individual applicationservice needs is the task of quality of service commitments; however, both the number of quanti-tative service commitments that can be simultaneously made, and the quantitative performancedelivered by the relative service commitments, depend on the aggregate bandwidth. Thus, whenconsidering collective entities we claim that we need only control the aggregate bandwidth avail-able to the constituent applications; we can deal with all other performance issues through qualityof service commitments to individual ows. Embedded within this reasoning is the assumptionthat bandwidth is the only scarce commodity; if bu�ering in the switches is scarce then we mustdeal with bu�er-sharing explicitly, but we contend that switches should be built with enoughbu�ering so that bu�er contention is not the primary bottleneck.Thus, this component of the service model, called link-sharing, addresses the question of how toshare the aggregate bandwidth of a link among various collective entities according to some set ofspeci�ed shares. There are several examples that are commonly used to explain the requirementof link-sharing among collective entities.Multi-entity link-sharing. { A link may be purchased and used jointly by several organizations,government agencies or the like. They may wish to insure that under overload the link is sharedin a controlled way, perhaps in proportion to the capital investment of each entity. At the sametime, they might wish that when the link is underloaded, any one of the entities could utilize allthe idle bandwidth.Multi-protocol link-sharing { In a multi-protocol Internet, it may be desired to prevent one protocolfamily (DECnet, IP, IPX, OSI, SNA, etc.) from overloading the link and excluding the otherfamilies. This is important because di�erent families may have di�erent methods of detecting andresponding to congestion, and some methods may be more \aggressive" than others. This couldlead to a situation in which one protocol backs o� more rapidly than another under congestion,and ends up getting no bandwidth. Explicit control in the router may be required to correct this.Again, one might expect that this control should apply only under overload, while permitting anidle link to be used in any proportion.Multi-service sharing { Within a protocol family such as IP, an administrator might wish to limitthe fraction of bandwidth allocated to various service classes. For example, an administrator mightwish to limit the amount of real-time tra�c to some fraction of the link, to avoid preempting elastictra�c such as FTP.In general terms, the link-sharing service model is to share the aggregate bandwidth accordingto some speci�ed shares; however, one must be careful to state exactly what this means. Thefollowing example will highlight some of the policy issues implicit in link-sharing. Consider three�rms, 1, 2, and 3, who respectively have shares 1/4, 1/4, and 1/2 of some link. Assume that fora certain hour, �rm 1 sends no tra�c to the link while �rms 2 and 3 each send enough to use theentire capacity of the link. Are �rms 2 and 3 restricted to only using their original shares of thelink, or can they use �rm 1's unused bandwidth? Assume for now that they are allowed to use�rm 1's unused bandwidth. Then, how is �rm 1's share of the link split between �rms 2 and 3? If,in the next twenty minutes, all three �rms each send enough tra�c to consume the entire link, is15



the link allocated solely to �rm 1 in order to make up for the imbalance in aggregate bandwidthincurred during the �rst hour, or is the link shared according to the original shares? Thus, thereare three policy questions to be resolved: can �rms use each other's unused bandwidth, how isthis unused bandwidth allocated to the remaining �rms, and over what time scale is the sharingof bandwidth measured? Clearly the answer to the �rst question must be a�rmative, since muchof the original motivation for link-sharing is to take advantage of the economies of statisticalaggregation. As for the second question, one can imagine many rules for splitting up the excessbandwidth but here we propose that the excess is assigned in proportion to the original shares sothat in the above example during the �rst hour the link would be split 1/3, 2/3 for �rms 2 and3 respectively. The answer to the third questions is less clear. The preceding example indicatesthat if sharing is measured over some time scale T then a �rm's tra�c can be halted for a time onthe order of T under certain conditions; since such cessation should be avoided, we propose doingthe sharing on an instantaneous basis (i.e., the limit of T going to zero). This would dictate thatduring this next twenty minutes the bandwidth is split exactly according to the original shares:1/4, 1/4, and 1/2. This policy embodies a \use-it-or-lose-it" philosophy in that the �rms are notgiven credit at a later date for currently unused bandwidth.An idealized uid model of instantaneous link-sharing with proportional sharing of excess is theuid processor sharing model (introduced in [8] and further explored in [30, 31]) where at everyinstant the available bandwidth is shared between the active entities (i.e., those having packets inthe queue) in proportion to the assigned shares of the resource. More speci�cally, we let � be thespeed of the link and we give each entity i its own virtual queue which stores its packets as theyawait service. For each entity i we de�ne the following quantities: si, the share of the link; ci(t),the cumulative number of bits in the tra�c stream that have arrived by time t; and the backlogbi(t), the number of bits remaining in the virtual queue at time t. Whenever a real packet arrivesat the switch belonging to entity i, we place a corresponding idealized packet at the tail of thatentity's virtual queue. The service within each such virtual queue is FIFO. We now describe howservice is allocated among the di�erent virtual queues. The idealized service model is de�ned bythe equations: b0i(t) = c0i �min[si�; c0i] if bi(t) = 0 (1)and b0i(t) = c0i(t)� si� if bi(t) > 0 (2)where b0i(t) and c0i(t) denote the time derivatives of bi(t) and ci(t), and where � is the uniqueconstant that makes Pi b0i = ��Pi c0i (when no such value exists, we set � =1).At every instant the excess bandwidth, that is the bandwidth left over from ows not using theirentire share of bandwidth, is split among the active entities (i.e., those with bi > 0) in proportionto their shares; each active15 entity receives an instantaneous bandwidth that is greater than orequal to their share of the full transmission rate.This uid model exhibits the desired policy behavior but is, of course, an unrealistic idealization.We then propose that the actual service model should be to approximate, as closely as possible,the bandwidth shares produced by this ideal uid model. It is not necessary to require that15There are three states a ow can be in: active (bi > 0), inactive (bi = 0 and c0i = 0), and in-limbo (bi = 0 butc0i > 0). 16



the speci�c order of packet departures match those of the uid model since we presume thatall detailed per-packet delay requirements of individual ows are addressed through quality ofservice commitments and, furthermore, the satisfaction with the link-sharing service delivered willprobably not depend very sensitively on small deviations from the scheduling implied by the uidlink-sharing model. The link-sharing service model provides quantitative service commitments onbandwidth shares that the various entities receive.Heretofore we have considered link-sharing across a set of entities with no internal structure tothe entities themselves. However, the various sorts of link-sharing requirements presented abovecould conceivably be nested into a hierarchy of link-sharing requirements, an idea �rst proposed byJacobson and Floyd [25]. For instance, a link could be divided between a number of organizations,each of which would divide the resulting allocation among a number of protocols, each of whichwould be divided among a number of services. We propose extending the idealized link-sharingservice model presented above to the hierarchical case. The policy desires will be represented bya tree with shares assigned to each node; the shares belonging to the children of each node mustsum to the share of the node, and the top node represents the full link and has a unit share.Furthermore, each node has an arrival stream described by ci(t) and a backlog bi(t) with thequantities of the children of each node summing to the quantity of the node. Then, at each nodewe invoke the uid processor sharing model among the children, with the instantaneous link speedat the i'th node, �i(t), set equal to the rate b0i(t) at which bits are draining out of that node'svirtual queue. We can start this model at the top node; when propagated down to the leaf nodes,or bottom-level entities, this determines the idealized service model.The introduction of a hierarchy raises further policy questions which are illustrated by the followingexample depicted in Figure 3. Consider two �rms, 1 and 2, each with two protocols, `a' and `b'.Let us assume that each of the bottom-level entities, 1a, 1b, 2a and 2b, has a 1/4 share of the link.When all of the bottom-level entities are sending enough to consume their share, the bandwidthis split exactly according to these shares. Now assume that at some instant there is no o�ered 2btra�c. Should each of 1a,1b and 2a get 1/3 of the link, or should 1a and 1b continue to get 1/4,with 2a getting the remaining 1/2 share of the link which is the total of the shares belonging to�rm 2? This is a policy question to be determined by the �rms, so the service model should alloweither. Figure 3 depicts two possible sharing trees. Tree #1 in the �gure produces the 1/4, 1/4,1/2 sharing whereas tree #2 produces the 1/3, 1/3, 1/3 sharing. When the link-sharing servicecommitment is negotiated, it will be speci�ed by a tree and an assignment of shares for the nodes.In the hierarchical model, the bandwidth sharing between the children of a given node was in-dependent of the structure of the grandchildren. One can think of far more general link-sharingservice models. Assume that in the example above that protocol `a' carries tra�c from applica-tions with tight delay requirements and protocol `b' carries tra�c from applications with loosedelay requirements. The two �rms might then want to implement a sharing policy that when 1ais not fully using its share of the link, the excess is shared equally among 1b and 2a, but when1b is not fully using its share of the link we will give the excess exclusively to 1a. To implementthis more complicated policy, it is necessary to take the grandchildren structure into account. Wethink that this sort of exibility is probably not needed, for the same reason that we restrictedourselves to bandwidth as the only collective concern; quality of service issues should be addressed17



Link Link

1/4 1/4 1/4 1/4 1/4 1/41/4 1/4

Tree #1 Tree #2

1a 1b 2a 2b 1a
1b

2a 2bFigure 3: Two possible sharing trees with equal shares at all leaf nodes. When one of the leafnodes is not active, the trees produce di�erent bandwidth shares for the remaining active nodes.via quality of service commitments and not through the link-sharing service model. Therefore, forour resource-sharing service model we restrict ourselves to the hierarchical service model presentedabove.This preceding discussion about the link-sharing service model implicitly assumed that all tra�cassociated with a bottom-level entity was serviced in a FIFO manner (i.e., the packet's belongingto a bottom-level entity were never reordered, even though the ordering relative to packets fromother bottom-level entities was not necessarily FIFO). However, the link-sharing service modelwill need to coexist with other scheduling disciplines. Rather than de�ning a completely generalservice model, we will later present an example where link-sharing is de�ned in the context ofnon-FIFO scheduling.In Section 3 we observed that admission control was necessary to ensure that the real-time servicecommitments could be met. Similarly, admission control will again be necessary to ensure thatthe link-sharing commitments can be met. For each bottom-level entity, admission control mustkeep the cumulative guaranteed and predictive tra�c from exceeding the assigned link-share.5 Ordering the Service RequirementsOur collection of service models consists of guaranteed real-time, predictive real-time, severalclasses of ASAP, and hierarchical link-sharing. These service models are comprised of severalvarieties of service commitments. There are three di�erent quantitative service commitments:guaranteed delay bounds, predictive delay bounds, and link-sharing bandwidth allocation shares.There are also two di�erent relative service commitments: minimax for predictive tra�c andmultiple classes of ASAP for elastic tra�c.These service commitments can be seen as a set of objectives or goals for the packet schedulingalgorithm. However, when a packet arrives and is scheduled, all of these objectives must becombined in some manner to make a single consistent scheduling decision for the packet. This isnot an entirely trivial task, given that there can be conicts among the objectives. For example,18



a packet using guaranteed service may need to leave at once to meet its delay objectives, but mayexceed the link-sharing objective if it does so. Furthermore, in a more trivial way, every otherscheduling objective is in conict with the ASAP scheduling goals. We must therefore �nd a wayof systematically combining these various objectives into a coherent decision framework.We now de�ne a transitive precedence ordering among the scheduling goals associated with theseservice commitments. This ordering can be thought of as de�ning a decision tree that reects howthe various objectives should be used to make a single scheduling decision. As such, this precedenceordering reects which service commitments the packet scheduling algorithm should keep if, uponoverload, it cannot meet all of them and thus must choose between them. Two important pointsto keep in mind are that (1) this is not an ordering of importance of the various service objectivesbut instead an ordering of which criteria take precedence in the scheduling algorithm, and (2)this ordering is not done in isolation but rather takes into account the limitations imposed byadmission control.Consider the three quantitative service commitments: guaranteed delay bounds, predictive delaybounds, and link-sharing bandwidth allocation shares. Recall that the delay bound given toguaranteed real-time tra�c is advertised to be perfectly reliable, whereas the delay bound givento predictive real-time tra�c is explicitly advertised to be imperfectly reliable. This stronglysuggests that guaranteed delay bounds take precedence over predictive delay bounds. In addition,since the link-sharing service model is less concerned with the timing of each individual packetthan the real-time service models, we can therefore conclude that the guaranteed delay boundsand the predictive delay bounds take precedence over the link-sharing bandwidth allocation shareson a packet by packet basis. Admission control plays a signi�cant role here. One can only allowthe real-time delay bound scheduling goals to take precedence over the link-sharing schedulinggoals because admission control ensures that such a policy will not lead to a signi�cant violationof the link-sharing goals.In general, it is natural to give quantitative service commitments precedence over qualitative ones.Correspondingly, we give the link-sharing scheduling goals, and therefore by transitivity the real-time delay bound scheduling goals, precedence over the ASAP scheduling goals. Furthermore, wegive the real-time delay bound scheduling goals precedence over the minimax scheduling goals.However, we do not give the link-sharing scheduling goals precedence over the minimax schedulinggoals, for the following reason. Admission control must ensure that the real-time tra�c, by itself,does not lead to violations of the link-sharing bandwidth allocation shares. This means that we donot have to check link-sharing limits when we make scheduling decisions for individual real-timepackets. Consequently, we need not give the link-sharing scheduling goals precedence over theminimax scheduling goals.Note, however, that we did insist that the real-time delay bound goals took precedence over theminimax scheduling goals; this is because we do not believe that admission control alone canensure that real-time delay bounds will be met16.16This statement is in contrast to the assumption made in much of the ATM literature that admission controlis not only necessary but also su�cient to ensure real-time delay bounds. We, to the contrary, do not expect thatnetworks will be able to support real-time delay bounds while operating at reasonably high levels of utilizationwithout explicit help from the packet scheduling algorithm.19



GB

PB

PM LS

EAFigure 4: The precedence ordering of the various scheduling goals. An arrow indicates precedenceand the following acronyms are used: GB=guaranteed delay bound, PB=predictive delay bound,PM=predictive minimax, LS=link-sharing bandwidth allocation share, and EA=elastic ASAP.We have thus established the ordering relationships of the three quantitative service commitments.The guaranteed delay bounds takes precedence over everything else, the predictive delay boundstake precedence over everything except the guaranteed delay bounds, and the link-sharing band-width shares take precedence over the ASAP scheduling goals but do not take precedence overthe minimax scheduling goal for predictive tra�c. We now claim that the two remaining relativeservice commitments, minimax predictive and ASAP elastic, are not directly comparable. Whilecurrently it seems clear that the time scales of the service requirements for typical elastic appli-cations are larger than those for typical tolerant real-time applications, there is nothing in thedistinction between elastic applications and tolerant real-time applications that demands that thisremain so in the future. We do not wish to embed this perhaps temporary time-scale distinctionin our architecture, and thus do not declare a precedence ordering relation between these tworelative scheduling goals. Consequently, since we are assuming this is a transitive ordering, wecannot install a precedence ordering between the relative service commitment of minimax predic-tive and the quantitative service commitment of link-sharing bandwidth allocation shares; abovewe argued that it was not necessary to give precedence to link-sharing over minimax predictive,and now due to transitivity we �nd that we cannot give precedence to minimax predictive overlink-sharing because that would then imply a precedence ordering between minimax predictiveand ASAP elastic. Combining these precedence relations, we �nd the precedence ordering of thescheduling goals which is depicted in Figure 4.One subtle point that arises is the interaction between the scheduling goals of guaranteed tra�cand the qualitative goals of minimax for predictive tra�c and ASAP for elastic tra�c. Recallthat guaranteed service makes a �rm commitment that packets will arrive before the delay bound,but makes absolutely no commitments about when during this period the packets will arrive.However, the two other services, elastic and predictive, do make qualitative commitments aboutdecreasing delay. In order for guaranteed service to be compatible with these other commitments,guaranteed packets should never take precedence over other packets unless they must be sent inorder to realize the delay bounds, and guaranteed packets should always be sent if the link wouldotherwise be idle. Thus, guaranteed packets should be sent as late as possible without violating20



<A-G>

GFigure 5: A scheduling architecture for guaranteed service. The symbol G represents some al-gorithm that orders the guaranteed packets and < A � G > represents an arbiter which decideswhen to send guaranteed packets.the delay bounds or letting the link go idle.When seen as de�ning a decision tree, this precedence ordering sets up a sequence of tests by whichscheduling decisions are made. First, the algorithm must check if any guaranteed packets need tobe sent in order to satisfy a guaranteed delay bound; if so, they are sent. Second, the algorithmmust check if any predictive packets need to be sent in order to satisfy a predictive delay bound;if so, they are sent. If no real-time packets need to be sent in order to satisfy these real-time delaybounds, then the algorithm is free to arbitrarily choose between giving some predictive packetservice (thereby meeting a minimax service goal), or giving some elastic packet service (therebymeeting an ASAP service goal). When the algorithm chooses to service an elastic packet, thelink-sharing goals determine the which elastic packet is sent.6 A Scheduling ArchitectureIn the last section we argued that general properties of the service model led to a natural precedenceordering of the various service commitments. We now explore the implications this precedenceordering has for packet scheduling algorithms. One might think that the precedence ordering ofscheduling goals would lead to a strict priority scheduling algorithm. We now argue that, instead,this ordering leads to a rather di�erent architecture for packet scheduling. For the moment, wewill ignore the bandwidth related scheduling goals associated with link-sharing and concentrateon the other scheduling goals which are all delay related. We �rst consider the case when there areonly guaranteed service commitments, and then add predictive service commitments and �nallyelastic service commitments. We can represent a general architecture for scheduling algorithmswhich deliver guaranteed service with the diagram in Figure 5. In this Figure, G represents somealgorithm that orders the guaranteed packets and < A�G > is an arbiter which decides when tosend the packet at the front of the queue. As we discussed in the previous section, < A�G > isdesigned to send packets as late as possible without violating the bounds, but will send packets ifthe link would otherwise be idle.When we add predictive service, the precedence ordering dictates that we get the structure depictedin Figure 6. In this Figure, P represents some algorithm that orders the predictive packets andthe arbiter < A � G > takes a packet from P unless it is necessary to service G to meet theguaranteed delay bounds. If both the predictive and guaranteed queues need to be serviced in21



<A-G>

G PFigure 6: A scheduling architecture for guaranteed and predictive service. The symbolP representssome algorithm that orders the predictive packets and < A�G > represents an arbiter that decideswhich queue to serve. The arbiter services theG queue only when necessary to meet the guaranteeddelay bounds, but if both queues need servicing the G queue gets precedence.
<A-G>

G

P

<A-P>

EFigure 7: A scheduling architecture for guaranteed, predictive, and elastic service. The symbol Erepresents some algorithm that orders the elastic packets, and < A� P > represents an arbiterthat decides which queue to serve. This arbiter must meet the predictive delay bounds, but isotherwise arbitrary.order to prevent a violation of their bounds, the guaranteed queue takes precedence.The scheduling requirements of meeting the delay bounds of real-time tra�c takes precedence overthe ASAP scheduling requirements of elastic tra�c. However, the scheduling goals of minimax forpredictive tra�c and ASAP for elastic tra�c do not take precedence over each other. This leadsto the structure illustrated in Figure 7, where < A � P > is an arbiter which makes sure thatthe delay bounds of predictive real-time tra�c are met but which then allocates service betweenthe ASAP needs of the elastic tra�c and the minimax needs of the predictive tra�c. This natureof this allocation is not speci�ed by the architecture, and can be anything consistent with thepredictive delay bounds.We now add link-sharing to this structure. Since link-sharing comes after the predictive boundsbut before the elastic ASAP in Figure 4, we get the structure shown in Figure 8. Here the Eidenote algorithms that order the elastic tra�c belonging to the various bottom-level entities and< LS > refers to a link-sharing algorithm that approximates the ideal uid model; the link-sharinghierarchy is embedded within the link-sharing algorithm < LS >, so we do not explicitly show thewhole link-sharing tree. The key point here, which is not explicitly shown in the above diagram, isthat the link-sharing algorithm must take into account the bandwidth used by the guaranteed andpredictive packets sent by the various collective entities when deciding which elastic tra�c to send,although the link-sharing algorithm does not a�ect the scheduling of the guaranteed and predictive22



<A-G>

G

P

<A-P>

E2E1

<LS>

E3Figure 8: A scheduling architecture for guaranteed, predictive, elastic, and link-sharing service.The symbols Ei represent algorithms that orders the elastic packets belonging to various bottom-level entities, and < LS > represents the link-sharing algorithm.packets. To make this more precise, recall that in the ideal service model of link-sharing each entityi is represented by a node in the link-sharing tree that has associated with it a virtual queue, ashare of the parent node's bandwidth, and the quantities ci(t), which represents the arrival patternof bits, and bi(t), which represents the number of bits remaining in the virtual queue. Previously,when we considered link-sharing in the absence of quality of service commitments, each node'svirtual queue was FIFO; to take account of the real-time tra�c we modify this. Whenever anelastic packet belonging to entity i or one of its descendants arrives, we place the correspondingidealized packet in the rear of the node's virtual queue. Whenever a real-time packet belonging toentity i or one of its descendants is transmitted, the corresponding idealized packet is placed atthe front of the virtual queue. Thus, the transmission of a real-time packet belonging to entity ihas the e�ect of delaying the departure of the queued elastic packets in the idealized model. Thecumulative bandwidth of the elastic and real-time tra�c belonging to entity i will therefore matchthe desired policy requirements.Our examination of the scheduling service model, and the precedence ordering of the schedulinggoals contained therein, leads us to conclude that any packet scheduling algorithm which supportsour scheduling service model will conform to the architecture depicted in Figure 8. This archi-tecture has three notable pieces: the guaranteed scheduling algorithm, which is comprised of thearbiter < A � G > and the ordering algorithm G; the predictive scheduling algorithm, which iscomprised of the arbiter < A�P > and the ordering algorithm P ; and the link-sharing algorithm< LS > and the ordering algorithms Ei. The scheduling architecture details how these pieces�t together. Guaranteed service sits at the top of the structure, followed by predictive service.Link-sharing goes below both of these services. Thus, our architecture dictates that while thelink-sharing goals will a�ect the admission control decisions for real-time ows, the link-sharinggoals have no e�ect on the scheduling of the real-time packets and only a�ect the scheduling ofelastic packets. We maintain that this is not just one possible way of scheduling packets, butrather the only way consistent with our service model.23



<Arbiter>

Pa

Pb

Pc

HWFQ

E1a

E1c

E2a

E2b

E2c

E3a

E3b

E3c

G

E1bFigure 9: A schematic diagram of a packet scheduling algorithm which realized the proposedscheduling service model. The labels a, b, c indicate di�erent priority levels in the predictive andelastic tra�c classes. The G queue is ordered by the SVC timestamps, and the P and E queues areall FIFO. The arbiter serves the G queue only when the lead timestamp is greater than currenttime.7 An Instantiation of the Scheduling ArchitectureAn instantiation of this architecture is de�ned by a choice for the arbitrating algorithms< A�G >and < A� P >, the link-sharing algorithm < LS >, and the ordering algorithms G, P , and Ei.The combination of < A � G > and G must provide perfectly reliable bounds, which meansthat the service a guaranteed ow gets must not be greatly a�ected by the behavior of othertra�c ows. Thus, as we argue in [3], the key heuristic to keep in mind when designing thesealgorithms is isolation; the scheduling algorithm must isolate the ows from one another. Thereare many choices for < A � G > and G: for instance, the \stop-and-go" algorithm in [16, 17],the hierarchical round-robin in [28], the J-EDD and D-EDD schemes in [12, 14, 35], the weightedround-robin algorithm described in [2, 25], and the weighted fair queueing (WFQ) algorithmdescribed in [8] and later analyzed in [30, 31]. However, we will choose to use a \stalled" versionof the VirtualClock [38, 39] algorithm which we will denote SVC and will describe in a later notebut is essentially using VirtualClock timestamps to order the guaranteed packets and then onlysending packets when their timestamp value is less than or equal to real time (or unless the linkwould otherwise be idle). While all of these algorithms provide guaranteed service, they vary inthe degree to which they delay guaranteed packets until it is absolutely necessary to send themand they also vary in the e�ciency with which they deliver guaranteed service (i.e., for a givenamount of bandwidth, how many service commitments can be simultaneously met).24



The predictive service model is to provide reliable bounds but to also deliver minimax service(that is, minimize the ex post maximum delay). Since we need not provide a perfectly reliablebound, isolation is not the most important requirement. In fact, isolation is counterproductivefor predictive tra�c and, as we argued in [3], the key heuristic here is sharing; sharing enables aparticular ow's transient burst of tra�c to pass through a switch without those packets expe-riencing overly large delays by spreading the delay around to other ows. Thus, an appropriatescheduling discipline is FIFO. (Actually, as we argue in [3], one can extend this notion of sharingacross switches and then an appropriate scheduling algorithm is what we called FIFO+.) Sincewe may want to o�er several di�erent delay bounds, we will employ a multi-level strict priorityqueue.The service model for link-sharing revolved around an idealized uid model. The connection be-tween such uid models and actual scheduling disciplines is discussed in [8] and [30, 31]; su�ce ithere to say that this connection is usually done by assigning, in the real switch, a \timestamp"to each real packet based on when all the bits in the corresponding idealized packet have beentransmitted in the uid model, and then using these timestamps to order the packet transmis-sions. This straightforward realization of the uid processor sharing model produces the WFQscheduling algorithm (its use for link-sharing was �rst explored in [7]). The WFQ algorithm can beextended to a hierarchical WFQ algorithm to match the service model of hierarchical link-sharing.However, we assume that one could modify several other algorithms, such as weighted round-robinor VirtualClock, to provide reasonable approximations to this service model.In order to meet the delay-related relative service commitments for elastic tra�c, we can provideseveral levels in a strict priority queue17. Lastly, for the arbiter < A � P > we choose to givestrict priority to the predictive tra�c. We do this because, as we mentioned previously, currentlymost real-time applications have tighter delay requirements than most elastic applications; this isaccentuated by the fact that tolerant real-time applications are sensitive to the tail of the delaydistribution whereas the performance of elastic applications tends to depend more on the centerof the distribution.Thus, a possible instantiation of the architecture is shown in Figure 9, where the labels a, b, cindicate di�erent priority levels in the predictive and elastic tra�c classes. In a later paper wewill discuss the implementation and the performance this scheduling algorithm.8 Denial of ServiceTo meet its quantitative service commitments, the network must employ some form of admissioncontrol. Without the ability to deny ows admission to the network, one could not reliably providethe various delay bound services o�ered by our service model. In fact, admission control is justone aspect of denial of service; there are several other ways in which service can be denied. Denialof service, in all of its incarnations, plays a fundamental role in meeting quantitative servicecommitments.17This does not address any of the congestion control issues that arise with elastic tra�c. Congestion controlmay necesitate using some variant of Fair Queueing [8] along with some form of congestion feedback.25



Since this paper is primarily about scheduling service models, and consequently focuses on theservice actually delivered by the network as opposed to the service denied by the network, we donot address in detail the algorithms used to deny service. Instead, in this section we merely discussthe various kinds of denial of service and sketch a few ways in which denial of service can be usedin conjunction with our service model. In particular, denial of service can be used to augmentthe resource sharing portion of the scheduling service model by supporting utilization targets.Moreover, denial of service, through the use of the preemptable and expendable service optionsdiscussed below, can enable the network to meet its service commitments while still maintainingreasonably high levels of network utilization.Denial of service, like service commitments, can occur at various levels of granularity. Speci�cally,denial of service can apply to whole ows, or to individual packets within a ow. We discuss thesetwo cases separately.8.1 Denial to FlowsDenial of service to a ow can occur either before or during the lifetime of that ow. Denyingservice to a ow before it enters the network is typically referred to as admission control. As weenvision it, in order to receive either of the two real-time bounded delay services (guaranteed andpredictive), a ow will have to explicitly request that service from the network, and this requestmust be accompanied by a characterization of the ow's tra�c stream. This characterizationgives the network the information necessary to determine if it can indeed commit to providing therequested delay bounds. The request is denied if the network determines that it cannot reliablyprovide the requested service. References [14, 19, 23, 27] discuss various approaches to admissioncontrol.In addition, a service model could o�er a preemptable ow service, presumably for a lower cost thannon-preemptable service. When the network was in danger of not meeting some of its quantitativeservice commitments, or even if the network was merely having to deny admission to other ows,then it could exercise the \preemptability option" on certain ows and immediately discontinueservice to those ows by discarding their packets (and, presumably, sending a control messageinforming those ows of their termination). By terminating service to these preemptable ows, theservice to the ows that are continuing to receive service will improve, and other non-preemptableows can be admitted.Admission control can be used to augment the link-sharing service model described in the previoussection. Link-sharing uses packet scheduling to provide quantitative service commitments aboutbandwidth shares. This service is designed to provide sharing between various entities which haveexplicitly contracted with the network to manage that sharing. However, there are other collectivepolicy issues that do not involve institutional entities, but rather concern overall utilization levelsof the various service classes (guaranteed, predictive, ASAP). Because they are not explicitlynegotiated, and so no service commitments are at stake, these utilization levels are not controlledby packet scheduling but instead are controlled by the admission control algorithm. All real-timeows are subject to scrutiny by the admission control process; only those ows that are acceptedcan use the network. If the admission control algorithm used the criteria that a ow was accepted26



if and only if it could be accepted without violating other quality of service commitments, thenthe utilization levels of the various classes will depend crucially on the order in which the servicerequests arrived to the network. One might desire, instead, to make explicit policy choices aboutthese various level of utilization. For instance, it is probably advisable to prevent starvation ofany particular class of tra�c; an explicit control would be needed to prevent starvation of elastictra�c since the ASAP service does not involve resource reservation. In addition, one might wantthe admissions process to ensure that requests for large amounts of bandwidth were not alwayssqueezed out by numerous smaller requests.To prevent such problems, we must introduce some guidelines, called utilization targets, into theadmission control algorithm so that the utilization levels are not just dependent on the details ofthe load pattern but instead are guided towards some preferred usage pattern. This utilizationtarget service model involves only admission control; thus, it is not properly part of the schedulingservice model. We mention utilization targets here because other aspects of the scheduling servicemodel rely on these utilization targets, and also because it is so similar to the link-sharing model,in that it represents policy objectives for aggregated classes of tra�c.8.2 Denial To PacketsWhile denial of service is usually associated with admission control, it also can be performedon a packet-by-packet granularity. Denial of service to individual packets could occur by meansof a preemptable packet service, whereby ows would have the option of marking some of theirpackets as preemptable. When the network was in danger of not meeting some of its quantitativeservice commitments, it could exercise a certain packet's \preemptability option" and discard thepacket (not merely delay it, since that would introduce out-of-order problems). By discardingthese preemptable packets, the delays of the not-preempted packets will be reduced.The basic idea of allowing applications to mark certain packets to express their \drop preference"and then having the network discard these packets if the network is congested has been circulatingin the Internet community for years, and has been simulated in Reference [33]. The usual problemin such a scheme is de�ning what congestion means. In the Internet, with its simple servicemodel, one usually equates congestion with the presence of a sizable queue. However, this is anetwork-centric de�nition that is not directly related to the quality of service desired by the variousapplications. In contrast, in our setting, we can make a very precise de�nition of congestion that isdirectly tied to the applications' service requirements: congestion is when some of the quantitativeservice commitments are in danger of being violated. The goal of admission control is to ensurethat this situation arises extremely infrequently.The basic idea of preemptability can usefully be extended in two directions. First, for the purposesof invoking the preemptability options, one can stretch the de�nition of a quantitative servicecommitment to include implicit commitments such as compliance with the historical record ofperformance. That is, one could choose to drop packets to make sure that the network continuedto provide service that was consistent with its past history, even if that past history was neverexplicitly committed to. Furthermore, one could also extend the de�nition of a quantitative servicecommitment to the utilization targets discussed above.27



Second, one can de�ne a class of packets which are not subject to admission control. In thescenario described above where preemptable packets are dropped only when quantitative servicecommitments are in danger of being violated, the expectation is that preemptable packets willalmost always be delivered and thus they must included in the tra�c description used in admissioncontrol. However, we can extend preemptability to the extreme case of expendable packets (theterm expendable is used to connote an extreme degree of preemptability), where the expectationis that many of these expendable packets will not be delivered. One can then exclude expendablepackets from the tra�c description used in admission control; i.e., the packets are not consideredpart of the ow from the perspective of admission control, since there is no commitment that theywill be delivered. Such expendable packets could be dropped not only when quantitative servicecommitments are in danger of being violated, but also when implicit commitments and utilizationtargets, as described above, are in danger of being violated.The goal of these preemptable and expendable denial of service options (both at the packet andow level of granularity) is to identify and take advantage of those ows that are willing to su�ersome interruption of service (either through the loss of packets or the termination of the ow) inexchange for a lower cost. The preemptable ows and packets provide the network with a marginof error, or a cushion, for absorbing rare statistical uctuations in the load. This will allow thenetwork to operate at a higher level of utilization without endangering the service commitmentsmade to those ows who do not choose preemptable service. Similarly, expendable packets canbe seen a �ller for the network; they will be serviced only if they do not interfere with any otherscheduling goal but there is no expectation that their being dropped is a rare event. This willincrease the level of utilization even further. We will not specify further how these denial of service,or preemptability, options are de�ned, but clearly there can be several levels of preemptability, sothat an application's willingness to be disrupted can be measured on more than a binary scale.This paper is based on the assumption that one can usefully distinguish between packet schedulingdecisions (\which packet do we send next?") and packet dropping decisions (\if this packet is nextto be sent, should we send it or drop it?"). Such a distinction seems natural when dropping is afairly rare event, and not the main vehicle through which quality of service is delivered. As wediscussed in Section 5, packet scheduling decisions have an ordered structure, which we depictedin Figure 4. In contrast, decisions about when to drop packets may involve the entire suite ofscheduling goals; one might drop expendable guaranteed packets in order to reduce ASAP delays,and one might drop predictive expendable packets in order to service additional expendable guar-anteed packets. This complicated interrelationship of service goals and possible dropping decisionsmakes it di�cult to envision a coherent and systematic architecture that describes which packetsto drop and when18. Does this render our basic scheduling architecture invalid or irrelevant? Wediscuss this question below.In this paper, we have discussed a service model in which we implicitly assumed that the vastmajority of sent data is delivered to its destination. In our taxonomy, some applications neededexplicit assurances about the network delays (the real-time applications), and others needed nosuch assurances (the elastic applications). However, the universal assumption was that most18Reference [15] discusses using link-sharing ideas to control such dropping decisions; while this is one possibleapproach, more general approaches are also possible. 28



applications expected that all (or almost all) of their data would be delivered. Thus, the networkwas faced with a bursty and inexible (inexible in that most of the data was neither preemptablenor expendable) load, and the challenge was to deliver the desired qualities of service. Schedulingalgorithms (accompanied by the appropriate admission control algorithms) are indeed the onlyfully general way to cope with this problem, and that was our object of focus.One can imagine applications such as hierarchically-encoded video which could easily be adequatelyserved with a service model in which, as we have briey outlined in this section, there is noassumption that most sent data will be delivered. If these applications represent a small percentageof the tra�c in the network, then such preemptable or expendable tra�c can be seen as cushionsor �ller which merely ease the implementation of our original service model, but do not undermineits relevance for the other applications. However, if such applications become the dominant sourceof tra�c in the network, then the central design problem is quite di�erent. The network isnow faced with a variable but highly exible demand, and can therefore drop packets at will toensure an almost constant delivered load. In this scenario, packet dropping, rather than packetscheduling, will be the main vehicle through which qualities of service are delivered and thus whilethe service model will remain valid, the scheduling architecture will be rendered largely irrelevant.We conjecture, and we admit that it is completely conjecture at this point, that the network willnot become dominated with such expendable tra�c. This is largely an economics judgment; if thenetwork did become dominated with such expendable tra�c, then the marginal cost of servingnonexpendable packets would be almost identical with the marginal cost of serving expendablepackets (since there is already such a large pool of droppable packets), and so the two servicesshould be similarly priced. However, one can only hypothesize a sizable share of expendablepackets if expendable service has a signi�cant price advantage over nonexpendable service. Thus,we think it unlikely that the network will be dominated by such expendable tra�c.9 Related WorkThere has been a urry of recent work on providing various qualities of service in packet networks.We cannot hope, nor do we try, to cover all of the relevant literature in this brief review. Instead,we mention only a few representative references. Furthermore, we focus exclusively on the issueof the service model and do not discuss to any great extent the underlying scheduling algorithm(for a review of the scheduling algorithms, see [3]).The motivating principle of this work is that the service model is primary. However, Reference [2](and, to a lesser extent, Reference [15]) contend that because we do not yet know the service needsof future applications, the most important goal is to design exible and e�cient packet schedul-ing implementations. Obviously both packet scheduling implementations and service models aretremendously important, but the debate here is over which one should guide the design of thenetwork. There are two points to be made.First, there is a fundamental di�erence in the time-scale over which packet scheduling implemen-tations and service models have impact. Once a router vendor with a substantial market presenceadopts a new packet scheduling implementation, it will likely remain �xed for several years. So, in29



the short term, we need to ensure that such packet scheduling implementations embody enoughexibility to adapt if a new service model is adopted during the product's lifetime. However, routertechnology, and the embedded packet scheduling implementations, do evolve as new products areintroduced, and so one cannot expect that packet scheduling implementations will remain �xedfor many years. The time scale of service models is rather di�erent. It typically takes much longerfor a new service model to become adopted and utilized, because it must be embedded in userapplications. However, once a service model does become adopted it is much harder to change,for precisely the same reason. Thus, we can say that while the set of packet scheduling implemen-tations will likely freeze �rst, the service model freezes harder. For this reason we choose to focuson the service model.Second, the role of exibility must be clari�ed. The services o�ered to individual ows by a packetscheduling algorithm must be part of a service model and, as we argued above, the service modeldoes not change rapidly (except in experimental networks, where perhaps looking for exibleand e�cient packet scheduling implementations is important); in particular, we expect servicemodels to change much less rapidly than packet scheduling algorithms. Thus, for quality of servicecommitments to individual ows, exibility is not of great importance. However, the link-sharingportion of the service model is not exercised by individual applications but rather by networkmanagers through some network management interface. This portion of the service model canchange much more rapidly, so exibility is indeed important for link-sharing and other forms ofresource sharing. Our disagreement over the relative importance of service models and packetscheduling implementations reects, at least in part, a deeper disagreement over the extent towhich quality of service needs are met indirectly by link-sharing, which controls the aggregatebandwidth allocated to various collective entities, as opposed to being met directly by quality ofservice commitments to individual ows. Actually, the important distinction here is not betweenlink-sharing and delay related services, but rather between those services which require explicituse of the service interface, and those that are delivered implicitly (i.e., based on informationautomatically included in the packet header). Network architectures designed around such implicitquality of service mechanisms do not require a well-de�ned service model nor do they requirecharging for network service; the network architecture we have advocated involves explicit qualityof service mechanisms and therefore requires a stable service model and, as we argue in Section10, di�erential charges for the various levels of network service.Much of the recent quality of service literature concentrates on the support of real-time applica-tions. As is most clearly spelled out in References [11, 13], the consensus of the literature is thatthe appropriate service model for these real-time applications is to provide a priori delay bounds.We should note that there is another viewpoint on this issue, which has not yet been adequatelyarticulated in the literature. It is conceivable that the combination of adaptive applications andsu�cient overprovisioning of the network could render such bounds, with the associated need foradmission control, unnecessary; applications could adapt to current network conditions, and theoverprovisioning would ensure that the network was very rarely overloaded. In this view, it wouldbe su�cient to provide only the several classes of elastic service without any real-time services.We think that the extreme variability of the o�ered load will require too great a degree of over-provisioning to make this approach practical. However, our line of reasoning is well outside thescope of this paper; we hope to explore this in more detail in future work.30



There are several service schemes whose service model is to provide a bound on the maximumdelay of packets, provided that the application's tra�c load conforms to some prearranged �lter.Such schemes include the WFQ (see [8]; also see citeP-G,ap-thesis which refers to this as the PGPSalgorithm), Delay-EDD (see [14]), and Hierarchical Round Robin (see [28]). This service model isidentical to our guaranteed service model; this can be considered the canonical service model forsupporting real-time applications.There are several service schemes which, given that the application's tra�c load conforms to someprearranged �lter, provide not only a bound on the maximum delay but also a nontrivial bound(i.e., a bound other than the no-queueing bound) on the minimum delay. One such scheme is theJitter-EDD scheme (see [11, 35]). The original Stop-and-Go scheme (see [16]) provides a jitterbound, which is a universal bound on the di�erence between the maximum and minimum delayswhich applies to all ows, no matter what network path their tra�c takes, and no matter whattheir o�ered load is (as long as it conforms to the characterization handed to admission control).The maximum delay bound will depend on the path, but the jitter bound depends only on theframe size of the network which is �xed. Subsequent enhancements to this scheme (see [17]) enablethe network to provide several di�erent values of jitter bounds. We did not include such nontriviallower bounds on delay in our present service model because they serve only to reduce bu�eringat the receiver and, as we argued in Section 3.2, we do not expect bu�ers to be a bottleneck;furthermore, if some applications do need additional bu�ering, this can easily be supplied at theedge of the network and need not be built into the basic scheduling service model.A rather di�erent form of service model is the o�ering of statistical characterizations of perfor-mance. The Statistical-EDD scheme (see [14]) o�ers a delay bound and the probability thatbound will be violated. In the MARS scheme, delay bounds are �rm but there is a statisticalcharacterization of packet loss (see [21, 22]). In some ways, these service o�erings are similar tothe predictive delay bounds included in our service model; however, we do not supply a preciseestimate of the probability. In fact, we explicitly rejected such statistically characterized serviceo�erings (in Section 3.1) because they inherently require a statistical characterization of individ-ual ows (or at least of the aggregate tra�c), and we doubt that such characterizations will beavailable. The SMDS service interface (see [10]) o�ers a �xed delay bound (independent of path)with an assurance that a given percentage of the tra�c will meet that bound. The statisticalcharacterization o�ered here is more similar to our predictive service, in that it applies only overlong time intervals. Another scheme which attempts to provide a reliable bound, but does not givea precise estimate of the probability of violation, is implicitly de�ned by the equivalent capacityapproximations in References [18, 19]; these approximations, when used in an admission controlscheme, can ensure with high reliability that delay bounds are not violated.The link-sharing service model has been informally discussed for years, but has rarely been writtenabout. One exception is the work of Davin and Heybey (see [7]), where an approximation to theWFQ algorithm was used to share a link between several agencies. More recently, Jacobsonand Floyd [15, 25] have discussed the possibility of hierarchical link-sharing, and have proposed amechanism to accomplish this. Steenstrup [34] has also proposed a mechanism for such hierarchicalsharing. In most of these works [2, 7, 25], the service model has been implicitly de�ned by themechanism itself. Recently, Floyd [15] has provided a more principled description of the service31



model, independent of the implementing mechanism. This service model is, in general outline,somewhat similar to what we have proposed. The biggest di�erence is that the service model isde�ned relative to estimators, which calculate an entity's bandwidth usage over some time period,and persistent backlogs, which indicate unsatis�ed demand; in contrast, our service model is de�nedrelative to the uid model. It is not clear how these approaches di�er in practice.The idea of o�ering several classes of service to elastic tra�c is often not explicitly mentioned inmany of the above proposals, but represents an entirely trivial change to the various schemes.This brief review of related work reveals that each component of our scheduling service modelhas some similar counterpart in the literature. While our service model is unique in including allof these di�erent components, our service model does not contain the sum of the features of theaforementioned schemes. In particular, we have excluded nontrivial bounds on minimum packetdelays and also excluded any statistically characterized service o�erings.Few of the above works focus on the service model independently of a particular realization.Consequently, they have typically not addressed the issue of the existence of a general schedulingarchitecture that we have proposed here. The only exception to this is the recent work of Floyd[15]. We have argued for a precedence ordering between the various scheduling goals, with real-timeobjectives taking precedence over link-sharing objectives. In contrast, Floyd views link-sharing ascoequal with real-time objectives, and argues that in some cases the link-sharing goals should causereal-time bounds to be violated. This is a rather fundamental di�erence, with roots in the di�eringroles the two viewpoints ascribe to service commitments; we see quality of service as negotiatedon a ow-by-ow basis with link-sharing only used for resource sharing issues, whereas Floyd seeslink-sharing as another way in which to deliver quality of service to ows (which then rendersit comparable in precedence to real-time goals). We hope to more fully explore the di�erencesbetween these two viewpoints in future work.10 DiscussionFigure 10 depicts our line of reasoning in this paper. In the �rst part of this paper, we proposeda scheduling service model for ISPN's. This proposal was based on some assumptions about thenature of present and future application quality of service requirements and institutional resourcesharing needs. The proposal was also shaped by judgments about the practical limitations of whatcan be controlled through scheduling algorithms, and judgments about the relative e�ciency withwhich the services can be delivered. Our service model has two components; a delay-relatedcomponent designed to meet the ergonomic requirements of individual applications, and a link-sharing component designed to meet the economic needs of resource sharing between di�erententities. The delay related services include two kinds of real-time service, guaranteed service andpredictive service, and also includes multiple classes of ASAP elastic service. The service modelfor hierarchical link-sharing is based on a hierarchical version of a uid model for generalizedprocessor sharing.In the second part of this paper, we explored the family of scheduling algorithms that could realize32



Scheduling
Architecture

Scheduling
Service Model

Speculations about
Future Application and
Institutional Requirements

Judgements about
Practicality and Efficiency

Scheduling
Algorithm #1

Scheduling
Algorithm #2

Scheduling 
Algorithm #nFigure 10: A schematic diagram of the line of reasoning used in this paper.this scheduling service model. We �rst introduced a transitive precedence ordering of these servicecommitments. We then found that this ordering led directly to a canonical scheduling architecture;all scheduling algorithms supporting our service model must conform to this architecture. Thisarchitecture is fairly general and can have many di�erent instantiations (and in Section 7 wesketched one such instantiation). The key elements of this architecture are that (1) predictive andelastic packets are sent if and only if guaranteed packets do not need to be sent, (2) admissioncontrol is used to keep the link-sharing goals from being violated by real-time tra�c, and (3) thelink-sharing algorithm accounts for the real-time tra�c in scheduling the elastic tra�c, but doesnot a�ect the scheduling of the real-time tra�c.The service model should be based on fundamental service requirements. Since we obviouslydon't know what future application requirements will be, the design of a scheduling service modelis inherently a speculative task, and there will be legitimate disagreements about which servicemodels are most appropriate. It is important to distinguish between disagreements which arisefrom di�erent predictions about future applications and those disagreements which arise fromdi�erent judgments about how to best serve an agreed upon set of applications. Therefore, it iscrucial to make the assumptions about future applications explicit, and we have attempted to dothat in this paper.Despite the surfeit of detailed scheduling proposals, there has been a regrettable dearth of dis-cussion, much less debate, about the basic service models that best �t application needs andnetwork technology ([11, 13] are a notable exceptions). In addition, comparisons between variousscheduling proposals typically focus solely on the algorithmic details rather than stressing theunderlying architectural and structural aspects. Thus, while we obviously hope that the speci�ctechnical proposals contained in this note have some validity, we think it likely that the issues weaddress, those of service models and scheduling architectures, are more important than the speci�canswers we propose. In fact, perhaps the most important point we make is that the arrows inFigure 10 go from left-to-right rather than from right-to-left as is implicitly assumed in the moremechanistically based discussions of integrated services packet networks.We conclude with one last observation: pricing must be a basic part of any complete ISPNarchitecture. If all services are free, there is no incentive to request less than the best servicethe network can provide, which will not produce e�ective utilization of the network's resources(see Reference [5, 6, 32] for a discussion of these issues). The sharing model in existing datagram33



networks deals with overload by giving everyone equally poor service; the equivalent in real-timeservices would be to refuse a high fraction of requests, which would be very unsatisfactory. Pricesmust be introduced so that some clients will request lower quality service because of its lower cost.Therefore, real-time services must be deployed along with some means for accounting.It is exactly this price discrimination that will make the predictive service class viable. Certainlypredictive service is less reliable than guaranteed service and, in the absence of any other incentive,network clients would insist on guaranteed service and the network would operate at low levelsof utilization and, presumably, high prices. However, if one can ensure that the reliability ofpredictive service is su�ciently high and the price su�ciently low, many network clients willprefer to use the predictive service. This will allow ISPN's to operate at a much higher level ofutilization, which then allows the costs to be spread among a much larger user population.11 AcknowledgmentsWe would like to thank Sally Floyd, Steve Deering, and Sugih Jamin for their helpful commentson an earlier draft of this paper.References[1] S. Casner. private communication, 1992.[2] D. Clark and V. Jacobson. Flexible and E�cient Resource management for Datagram Net-works, unpublished draft, 1991.[3] D. Clark, S. Shenker, and L. Zhang. Supporting Real-Time Applications in an IntegratedServices Packet Network: Architecture and Mechanism In Proceedings of SIGCOMM '92,pp 14-26, 1992.[4] R. Chipalkatti, J. Kurose, and D. Towsley. Scheduling Policies for Real-Time and Non-Real-Time Tra�c in a Statistical Multiplexer, In Proceedings of GlobeCom '89, pp 774-783,1989.[5] R. Cocchi, D. Estrin, S. Shenker, and L. Zhang. A Study of Priority Pricing in MultipleService Class Networks, In Proceedings of SIGCOMM '91, pp 123-130, 1991.[6] R. Cocchi, D. Estrin, S. Shenker, and L. Zhang. Pricing in Computer Networks: Motivation,Formulation, and Example, preprint, 1992.[7] J. Davin and A. Heybey. A Simulation Study of Fair Queueing and Policy Enforcement, InComputer Communication Review, 20(5), pp 23-29, 1990.[8] A. Demers, S. Keshav, and S. Shenker. Analysis and Simulation of a Fair Queueing Algorithm,In Journal of Internetworking: Research and Experience, 1, pp. 3-26, 1990. Also in Proc.ACM SIGCOMM '89, pp 3-12. 34



[9] J. DeTreville and D. Sincoskie. A Distributed Experimental Communications System, InIEEE JSAC, Vol. 1, No. 6, pp 1070-1075, December 1983.[10] F. Dix, M. Kelly, and R. Klessig. Access to a Public Switched Multi-Megabit Data ServiceO�ering, In Computer Communication Review, 20(3), pp 36-61, 1990.[11] D. Ferrari. Client Requirements for Real-Time Communication Services, In IEEE Commu-nications Magazine, 28(11), November 1990.[12] D. Ferrari. Distributed Delay Jitter Control in Packet-Switching Internetworks, In Journalof Internetworking: Research and Experience, 4, pp. 1-20, 1993.[13] D. Ferrari, A. Banerjea, and H. Zhang Network Support for Multimedia, preprint, 1992.[14] D. Ferrari and D. Verma. A Scheme for Real-Time Channel Establishment in Wide-AreaNetworks, In IEEE JSAC, Vol. 8, No. 3, pp 368-379, April 1990.[15] S. Floyd. Link-sharing, resource management, and the future internet, preprint, 1993.[16] S. J. Golestani. A Stop and Go Queueing Framework for Congestion Management, In Pro-ceedings of SIGCOMM '90, pp 8-18, 1990.[17] S. J. Golestani. Duration-Limited Statistical Multiplexing of Delay Sensitive Tra�c in PacketNetworks, In Proceedings of INFOCOM '91, 1991.[18] R. Gu�erin and L. G�un. A Uni�ed Approach to Bandwidth Allocation and Access Control inFast Packet-Switched Networks, In Proceedings of INFOCOM '92.[19] R. Gu�erin, H. Ahmadi, and M. Naghshineh. Equivalent Capacity and Its Application toBandwidth Allocation in High-Speed Networks, In IEEE JSAC, Vol. 9, No. 9, pp 968-981,September 1991.[20] J. Kurose. Open Issues and Challenges in Providing Quality of Service Guarantees in High-Speed Networks, In Computer Communication Review, 23(1), pp 6-15, 1993.[21] J. Hyman and A. Lazar. MARS: The Magnet II Real-Time Scheduling Algorithm, In Pro-ceedings of SIGCOMM '91, pp 285-293, 1991.[22] J. Hyman, A. Lazar, and G. Paci�ci. Real-Time Scheduling with Quality of Service Con-straints, In IEEE JSAC, Vol. 9, No. 9, pp 1052-1063, September 1991.[23] J. Hyman, A. Lazar, and G. Paci�ci. Joint Scheduling and Admission Control for ATS-basedSwitching Nodes, In Proceedings of SIGCOMM '92, 1992.[24] J. Hyman, A. Lazar, and G. Paci�ci. A Separation Principle Between Scheduling and Ad-mission Control for Broadband Switching, In IEEE JSAC, Vol. 11, No. 4, pp 605-616, May1993.[25] V. Jacobson and S. Floyd private communication, 1991.35



[26] V. Jacobson private communication, 1991.[27] S. Jamin, S. Shenker, L. Zhang, and D. Clark. An Admission Control Algorithm for PredictiveReal-Time Service, In Proceedings of the Third International Workshop on Networkingand Operating System Support for Digital Audio and Video, 1992.[28] C. Kalmanek, H. Kanakia, and S. Keshav. Rate Controlled Servers for Very High-SpeedNetworks, In Proceedings of GlobeCom '90, pp 300.3.1-300.3.9, 1990.[29] R. Nagarajan and J. Kurose. On De�ning, Computing, and Guaranteeing Quality-of-Servicein High-Speed Networks, In Proceedings of INFOCOM '92, 1992.[30] A. Parekh and R. Gallager. A Generalized Processor Sharing Approach to Flow Control- TheSingle Node Case, In Technical Report LIDS-TR-2040, Laboratory for Information andDecision Systems, Massachusetts Institute of Technology, 1991.[31] A. Parekh. A Generalized Processor Sharing Approach to Flow Control in Integrated ServicesNetworks, In Technical Report LIDS-TR-2089, Laboratory for Information and DecisionSystems, Massachusetts Institute of Technology, 1992.[32] S. Shenker Service Models and Pricing Policies for an Integrated Services Internet, to appearin Proceedings of \Public Access to the Internet", Harvard University, 1993.[33] H. Schulzrinne, J. Kurose, and D. Towsley. Congestion Control for Real-Time Tra�c, InProceedings of INFOCOM '90.[34] M. Steenstrup. Fair Share for Resource Allocation, preprint, 1993.[35] D. Verma, H. Zhang, and D. Ferrari. Delay Jitter Control for Real-Time Communication ina Packet Switching Network, In Proceedings of TriCom '91, pp 35-43, 1991.[36] C. Weinstein and J. Forgie. Experience with Speech Communication in Packet Networks, InIEEE JSAC, Vol. 1, No. 6, pp 963-980, December 1983.[37] D. Yates, J. Kurose, D. Towsley, and M. Hluchyj. On Per-Session End-to-End Delay Distri-bution and the Call Admission Problem for Real Time Applications with QOS Requirements,In Proceedings of SIGCOMM '93, to appear.[38] L. Zhang. A New Architecture for Packet Switching Network Protocols, In Technical ReportLCS-TR-455, Laboratory for Computer Science, Massachusetts Institute of Technology, 1989.[39] L. Zhang. VirtualClock: A New Tra�c Control Algorithm for Packet Switching Networks, InACM Transactions on Computer Systems, Vol. 9, No. 2, pp 101-124, May 1991. Also inProc. ACM SIGCOMM '90, pp 19-29. 36


